Enhanced Karush-Kuhn-Tucker condition and weaker constraint qualifications
نویسندگان
چکیده
In this paper we study necessary optimality conditions for nonsmooth optimization problems with equality, inequality and abstract set constraints. We derive the enhanced Fritz John condition which contains some new information even in the smooth case than the classical enhanced Fritz John condition. From this enhanced Fritz John condition we derive the enhanced Karush-Kuhn-Tucker (KKT) condition and introduce the associated pseudonormality and quasinormality condition. We prove that either pseudonormality or quasinormality with regularity on the constraint functions and the set constraint implies the existence of a local error bound. Finally we give a tighter upper estimate for the Fréchet subdifferential and the limiting subdifferential of the value function in terms of quasinormal multipliers which is usually a smaller set than the set of classical normal multipliers. In particular we show that the value function of a perturbed problem is Lipschitz continuous under the perturbed quasinormality condition which is much weaker than the classical normality condition.
منابع مشابه
On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملEnhanced Karush-Kuhn-Tucker Conditions for Mathematical Programs with Equilibrium Constraints
In this paper we study necessary optimality conditions for nonsmooth mathematical programs with equilibrium constraints (MPECs). We first show that MPEC-LICQ is not a constraint qualification for the strong (S-) stationary condition when the objective function is nonsmooth. Enhanced Fritz John conditions provide stronger necessary optimality conditions under weaker constraint qualifications. In...
متن کاملFirst order optimality conditions for generalized semi-infinite programming problems
In this paper we study first order optimality conditions for the class of generalized semi-infinite programming problems (GSIPs). We extend various wellknown constraint qualifications for finite programming problems to GSIPs and analyze the extent to which a corresponding Karush-Kuhn-Tucker (KKT) condition depends on these extensions. It is shown that in general the KKT condition for GSIPs take...
متن کاملStrict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization
Sequential optimality conditions for constrained optimization are necessarily satisfied by local minimizers, independently of the fulfillment of constraint qualifications. These conditions support the employment of different stopping criteria for practical optimization algorithms. On the other hand, when an appropriate strict constraint qualification associated with some sequential optimality c...
متن کاملConstraint Qualifications and KKT Conditions for Bilevel Programming Problems
In this paper we consider the bilevel programming problem (BLPP), which is a sequence of two optimization problems where the constraint region of the upper-level problem is determined implicitly by the solution set to the lower-level problem. We extend well-known constraint qualifications for nonlinear programming problems such as the Abadie constraint qualification, the Kuhn-Tucker constraint ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 139 شماره
صفحات -
تاریخ انتشار 2013